PH4

Question			Marking details	Marks Available
1	(a)	(i)	Increase (change) in the internal energy [of the system]	1
		(ii)	Heat supplied to (flowing into) [the system]	1
		(iii)	Work done by the system	1
	(b)		PV = nRT	
			$T = \frac{PV}{nR} (1) = \frac{(1.01 \times 10^5) (1.3 \times 1.00 \times 10^{-2})}{(0.4) (8.31)} = 395 \text{ K (1)} \text{unit mark}$	2
	(c)	(i)	$(1.01 \text{ x}10^5) (0.3 \text{ x} 1.00 \text{ x}10^{-2}) = 303 \text{ [J] on gas } (1)$	
		(ii)	0 / No work (1)	
		(iii)	$\frac{1}{2}(0.3 \times 1.00 \times 10^{-2})(0.2 \times 1.01 \times 10^{5}) + (0.3 \times 1.00 \times 10^{-2})(1.01 \times 10^{5})$	
			=30+303	
			= 333 [J] (1) by gas ecf from (c)(i) (1)	4
	(d)		Convincing evidence of multiplication by 3 for the 3 cycles (1)	
			$\Delta U = 0 \ (1)$	
			$Q = \Delta U + W = 0 + 90 = 90$ [J] into gas (1) ecf from (c)(iii)	3
			Question 1 total	[12]

Question			Marking details	Marks Available
3	(a)		Acceleration α displacement from central (fixed) point (1)	
			is directed towards the central (fixed) point (1)	2
	<i>(b)</i>	(i)	$\omega = \frac{2\pi}{T} = \frac{2\pi}{0.40} = 15.7 \text{ [rad s}^{-1}\text{] (1)}$	2
			$v_{\text{max}} = \omega A = (15.7)(0.05) = 0.79 \text{ [m s}^{-1}](1)$	2
		(ii)	$a_{\text{max}} = \omega^2 A (1) = (15.7)^2 (0.05) = 12.3 \text{ [m s}^{-2}] (1)$	2
	(c)		$x = 0.05 \sin\left(15.7t - \frac{\pi}{2}\right) [m]$	
			0.05 (1) 15.7 (1) $-\frac{\pi}{2}$ (1) or accept -90°	3
	(d)		Loses contact when $a = -g(1)$	
			$-\omega^2 x = -g$	
			$x = \frac{9.81}{(15.7)^2} = 0.04 \text{ [m] (1)}$	2
			Question 3 total	[11]

Question			Marking details	Marks Available
4	(a) (b)	(i) (ii)	Scales on both axes (1) Period and shape (1) Amplitude (1) e.g. air resistance magnetic damping friction by itself is not enough - needs either reference or implication to air resistance	3
		(ii)	General shape with label (accept if peak on or just to left of f_o) Smaller values than A with peak not to the right and correct shape	1 1
		(iii)	At a <u>certain</u> driving <u>frequency</u> there is a <u>maximum</u> (peak) in the <u>amplitude</u> of the oscillating load. At this frequency the system is at resonance.	1
		(iv)	e.g. microwave cooking (1) driving force: by microwave radiation (1) responding oscillator: water molecules (1)	3
			Question 4 Total	[10]

Question			Marking details	Marks Available
5	(a)	(i)	PV = n RT	
			$n = \frac{PV}{RT} = \frac{(3.04 \times 10^5)(0.025)}{(8.31)(280)} = 3.27[\text{mol}]$	1
		(ii)	$N = n N_A = (3.27) (6.02 \times 10^{23}) = 1.97 \times 10^{24}$ allow ecf from (i)	1
		(iii)	$\rho = \frac{\left(\text{mr x } 10^{-3}\right)n}{V} = \frac{\left(4\text{x} 10^{-3}\right)(3.27)}{0.025} = 0.52[\text{ kg m}^{-3}] (1)$	
			formula with $m_{\rm r}$ (1)	2
		(iv)	$P = \frac{1}{3} \rho \overline{c^2}$	
			$\sqrt{\overline{c^2}} = \sqrt{\frac{3P}{\rho}} = \sqrt{\frac{3(3.04x10^5)}{0.52}} = 1324[ms^{-1}] \text{ (1) allow ecf from (iii)}$	2
			Rearrange equation (1)	
	(b)	(i)	(Combining of the two given equations to give) $\frac{1}{3} Nm\overline{c^2} = nRT$ (1)	
			KE of gas (i.e. of the <i>N</i> molecules) = $\frac{1}{2} N m \overline{c^2}$ [= number of atoms x $\frac{1}{2} m \overline{c^2}$] (1)	
			(can award for K.E. of one molecule i.e. K.E. = $\frac{1}{2} m\overline{c^2}$ only if it is	
			clearly noted that it is for one molecule) $\therefore \text{ KE of gas } \left[\frac{1}{2}Nm\overline{c^2}\right] = \frac{3}{2}nRT \text{ manipulation mark (1)}$	
			Internal energy of gas $(U) = KE + PE$ and $PE = 0$ (for ideal gas) (1) [or internal energy is only the KE] (so $U = \frac{3}{2} n RT$)	4
		(ii)	$U = \frac{3}{2} n RT = \frac{3}{2} (3.27) (8.31) (280) = 11 413 [J]$	1
			Question 5 Total	[11]

PH5

Question		Marking details	Marks Available
1	(a)	All α absorbed / stopped by paper (1)	
		(nearly) all γ passes through (1)	2
	(b)	$_{-1}^{0}[\beta]$ correct (1)	
		Conservation of A and Z (but not for trivial ${}^{\circ}\beta$) (1)	2
	(c)	$\lambda = \frac{\ln 2}{T_{1/2}} \text{used (1)}$ $\frac{\ln 2}{28.8 \times 365 \times 24 \times 3600} [= 7.63 \times 10^{-10} \text{ s}^{-1}] \text{ (1)}$	2
	(d)	Correct equation used i.e. some understanding of $A = A_0 e^{-\lambda t}$ or $A = \frac{A_0}{2^n}(1)$	
		Answer correct (110 GBq $$ ecf on λ) (1)	2
	(e)	$A = \pm \lambda N$ used (e.g. $140 = 7.6 \times 10^{-10} N$ is ok) (1)	
		$N = 1.83 \times 10^{20} (1)$	
		Mass = $90 \text{ u x } 1.83 \text{ x } 10^{20} =$ 27.4 x $10^{-6} \text{ kg } (27.4 \text{ mg}) \text{ ecf on } N(1) \text{ UNIT mark}$	3
		Question 1 total	[11]

Question		Marking details	Marks Available
2	(a)	LHS - RHS attempted (0.1859 u) (1)	
		x 931 or $E=mc^2$ used (must have u to kg conversion) (1)	
		173.1 [MeV] / 2.78 x 10 ⁻¹¹ [J](1)	3
	(b)	[more or 3] <u>neutrons</u> are released (1)	
		These can produce fission (or, on average one of these) (1)	2
	(c)	Control rods stop or absorb neutrons (1)	
		Moderator slows neutrons (1)	
		To increase [probability of] fission (or increase capture X-section) (1)	3
	(d)	[Highly] radioactive for many years / long half life (1)	
		Any sensible A level standard comment relating to - storage, leakage, transportation, cost, dirty bombs etc. (1)	2
		Question 2 Total	[10]

Question			Marking details	Marks Available
7	(a)		Because their star is the Sun or they all orbit the Sun or $\frac{M_{star}}{M_{Sun}} = 1$ Accept M_{star} is the same	1
	<i>(b)</i>	(i)	2 Habitable Zone Solar System	1
		(ii)	0.5 0.4 0.3 0.2	1
		(c)	(i) yes because it's in the habitable zone ecf (1)	
			(ii)[no] because it is too hot or too close to star ecf (1)	2
		(d)	Eliminating $r_S(1)$ $\frac{M_S v_S^2}{r_S} = \frac{GM_S M_p}{d^2} \rightarrow \frac{v_S^2}{M_p d/M_S} = \frac{GM_p}{d^2} \text{or } M_S v_S^2 = \frac{GM_S r_S M_p}{d^2} = \frac{GM_p dM_p}{d^2}$	
			Remainder of algebra convincing (1)	2
		(e)	Because Doppler shift $\propto v_s$ (accept depends on) (1)	
			and $v_S \propto M_P$ or v_S increases with M_P (1)	
			and $v_S \propto M_S^{-0.5}$ or v_S decreases with M_S (1)	
			and $v_{\rm S} \propto d^{-0.5}$ or $v_{\rm S}$ decreases with d (1)	4

Question		Marking details	Marks Available
7	\emptyset	Some comment about most planets being large mass e.g. nearly all masses greater than M_E or average/median mass is close to mass of Jupiter etc. (1) Some comment about d being quite small on average e.g. mean/median d is only about 1 AU (not 0 AU!) or nearly all planets inside 10 AU etc. (1) The graph says nothing about the size of the star (1) Award a maximum of 2 marks only Most planets towards top left of graph (by itself) scores 1 mark	2
	(g)	$\begin{array}{c} \log_{10}\left(M/M_{J_{\perp}}\right) \\ \times \\ \log_{10}\left(M/M_{E}\right) \end{array}$	
		Accept a circle around the correct planet x correct – 1 mark, y correct – 1 mark	2
	(h)	$\frac{\pi r_1^2}{\pi r_2^2} = \mathbf{20^2} (1)$ Drops by 0.25% or drops to 99.75% or drops by $\frac{1}{400}$ (1) (correct answer implies first step)	2
	(i)	Radial velocity gives mass (1)	
		Transit gives radius or area or diameter (1)	
		Density = $\frac{mass}{volume}$ and volume from area or diameter or radius (1)	3
		Question 7 Total	[20]